3 days ago

Hedge Fund Return Persistence and Performance

In this episode, we review two academic papers investigating various aspects of hedge fund performance and investment strategies. One relatively new study primarily examines how macroeconomic factors and the inclusion of hedge fund strategies impact portfolio performance for risk-averse investors, particularly focusing on out-of-sample predictability and risk-adjusted returns. It highlights that integrating hedge funds and considering macro-driven patterns can significantly enhance economic value, even though traditional measures like Sharpe ratios may not always reflect this fully due to higher-order moments like skewness and kurtosis. The other paper provides more background with a comprehensive survey of literature on hedge fund performance up until 2004, detailing various biases in hedge fund databases (e.g., survivorship, instant history, selection) and discussing different performance measurement methodologies, including traditional and adjusted Sharpe ratios, and multi-factor models that account for their unique non-linear exposures and time-varying risk profiles.

References

Magnani, Monia, Does Macroeconomic Predictability Enhance the Economic Value of Hedge Funds to Risk-Averse Investors?  (October 15, 2024). BAFFI Centre Research Paper No. 232, Available at SSRN: https://ssrn.com/abstract=4988114 or http://dx.doi.org/10.2139/ssrn.4988114

Géhin, Walter, A Survey of the Literature on Hedge Fund Performance (October 2004). Available at SSRN: https://ssrn.com/abstract=626441 or http://dx.doi.org/10.2139/ssrn.626441

Podcast Disclaimer

This podcast is an independent production and is not affiliated with or endorsed by any third-party entities unless explicitly stated. The content is for educational and informational purposes only and does not constitute financial, investment, legal, or professional advice. Listeners should consult qualified professionals before making any decisions based on this content.

This episode is based on the references listed above and was generated using Notebook LM and other AI tools. While I have reviewed the content for accuracy, it may still contain errors, inaccuracies, or omissions. Neither the producers nor any affiliates accept liability for any damages or losses arising from the use or interpretation of this content.

 

Comment (0)

No comments yet. Be the first to say something!

Copyright 2025 All rights reserved.

Podcast Powered By Podbean

Version: 20241125